Controle de Versao

Rafael Lemos
rafaellemos42@gmail.com

e O que e Git?
e O que é GitHub?

e (Qual a diferenca entre os dois?

Controle de Versao

Sistema que acompanha e registra todas as alteragdes feitas em arquivos ou
projetos ao longo do tempo. Ele permite reverter arquivos ou projetos a versoes
anteriores, comparar mudancas feitas em diferentes momentos, e identificar quem
fez cada modificacao, quando foi feita e por qué. Isso facilita a correcao de erros,

o trabalho em equipe e o entendimento da evolugao do projeto.

Controle de Versao Local

Checkout

Local

Computer

Version Database

Version 3

Version 2

Version 1

Controle de Versao Centralizado

shared
X Propenso a falhas
repos RO Yy

Controle de Versao Distribuido

Server Computer

Version Database

Computer A

Version Database

Version 3
|
Version 2
|

Version 1

Version 3
|
Version 2
|
Version 1
< »

Computer B

Version Database

Version 3
|
Version 2
|

Version 1

De onde veio o Git?

e Inicio do Linux (1991-2002): “controle de versao” era o proprio Linus Torvalds
e pequenos patches (totalmente contra CVCS);

e 2002: incorporacao do BitKeeper (DVCS) no Linux. AA

o Porém, a licenca era extremamente restritiva BITKEEPER

7
https://graphite.dev/blog/bitkeeper-linux-story-of-git-creation

De onde veio o Git?

e 2005: quebra da licenca fazendo engenharia reversa do BitKeeper;
e (Quebra da relacao entre as comunidades;

e Discussao na comunidade sobre alternativas:
o Rapidas
o Design simples
o Suporte a desenvolvimento nao-linear
o Totalmente distribuidas

o Capazes de lidar com grandes projetos (Linux)

https://graphite.dev/blog/bitkeeper-linux-story-of-git-creation

De onde veio o Git?

e Linus de “peacemaker”:

On Fri, 8 Apr 2005, Andrea Arcangeli wrote:
>
> Why not to use sqgl as backend instead of the tree of directories?

Because it sucks?

I can come up with millions of ways to slow things down on my own. Please
come up with ways to speed things up instead.

Linus

e Linus entra de férias...

9
https://graphite.dev/blog/bitkeeper-linux-story-of-git-creation

De onde veio o Git?

e Durante as “férias™;

o Troca de emails sobre alternativas (criar uma nova era fora de cogitagao)

o Senso de urgéncia para continuar o desenvolvimento do Linux
e 7/ dias depois... Nasce o Git (ou o esqueleto dele)

o Nao havia discussédo do Workflow, mas sim da arquitetura (hash-based)

o Ainda nao era 100% um controle de versao

"git" is really trivial, written in four days. Most of that was not
actually spent coding, but thinking about the data structures.

Linus

10
https://graphite.dev/blog/bitkeeper-linux-story-of-git-creation

De onde veio o Git?

Duas semanas depois:

List:
Subject:
From:
Date:

git
First ever real kernel git merge!
Linus Torvalds <torvalds () _osdl ! orxg>

2005-04-17 22:10:25

Dois anos depois:

GitHub

11

De onde veio o Git?

“Git foi criado como uma ferramenta para destravar futuros langcamentos do kernel
do Linux, ndao com a intencido de reinventar globalmente toda a gestao de
codigo-fonte;

Quando pensamos na histdria, muitas vezes a romantizamos como algo que
nasce de um subito lampejo de inspiragao. Mas a criacao do Git mostra a
realidade muito mais dura da invencdo: um desacordo crescente sobre uma
licenca; a necessidade de uma solucao improvisada para destravar o trabalho; e
depois, anos e anos de aperfeicoamento continuo, liderado nao pelo inventor,
mas por uma comunidade.”

12
https://graphite.dev/blog/bitkeeper-linux-story-of-git-creation

Ta, mas por que o Git é especial?

Normalmente: delta-based

Git: “snapshot”-based

Checkins Over Time

CZD CZD =D D D

File A —» A1 > A2
File B > A1 — A2
FileC —» A1 —» A2 » A3

Checkins Over Time

File A Al Al A2 A2
L . N I [

File B B B B1 B2
- [L I |

File C C1 c2 C2 C3

13

Vantagens

e Distribuido: Cada desenvolvedor tem uma copia completa do repositorio,
incluindo todo o historico.

e Seguro: Usa SHA-1 para garantir integridade dos dados.

e Flexivel: Suporta varios fluxos de trabalho (centralizado, com ramificagdes,
etc.).

e Rapido e local: Nenhuma informacao € necessaria de outro computador da

rede.

o Mudangas e historico sdo armazenados localmente nos arquivos (lembram do hash?)

14

Os Trés Estados

e Modified: arquivo alterado, mas ainda sem commit,
e Staged.: arquivo marcado para fazer parte do proximo commit;

e Committed: arquivo esta armazenado no banco de dados local.

< Repository
< Staging Index

Working

Os Trés Estados

File Status Lifecycle

_ NCONEDN

=

16

Setup Inicial - Git Config

e Sistema (--system): [path]/etc/gitconfig
e Global (--global): ~/.gitconfig Prioridade

e Repositorio (--local): .git/config

$ git config --list --show-origin

:/home/rlemos/.gitconfig user.email=rafael_plemos@hotmail.com
:/home/rlemos/.gitconfig user.name=rplemos

: /home/rlemos/.gitconfig init.defaultbranch=main
:/home/rlemos/.gitconfig credential.helper=store

:.git/config core.repositoryformatversion=0
:.git/config core.filemode=false
:.git/config core.bare=false

:.git/config core.logallrefupdates=true

17

Setup Inicial - Git Config

e $ git config --global user.name “usuario”
e $ git config --global user.email “email”

e $ git config --global init.defaultBranch main

e $ git config --list

18

Setup Inicial - Ajuda
e Geral: § git help

e Detalhada: $ git help <comando>

e Resumida: $§ git <comando> -h

19

Criando Repositorios Locais

e Criando repositorio do zero:
o $ gitinit <pasta>

e Adicionando arquivos (tracking): e Checando status:
o $ git add <arquivo> o git status

e “Committando” arquivos (s6 os que foram adicionados):

o $ git commit -m <mensagem>

20

Status dos Arquivos

e Tracked:

o Arquivos que o Git “sabe que existem”;

o Podem ser unmodified, modified e staged,
e Untracked.

o Arquivos que o Git “ndo sabe que existem”;

o Precisam ser adicionados;
e Ignored:

o Arquivos de log, configuracéo...
o Presentes no arquivo .gitignore

o Boas praticas e templates: https:/github.com/qithub/gitignore

21

Status dos Arquivos

Untracked Unmodified

Add the file

Remove the file

Edit the file

IIIIHHHHHH%IIII IIIIEHH%HHIIIII

Stage the file

22

Historico de Commits

$ git log

commit afU750e9cbel®30dfdd29637b6a32da2b63del3e
Author: rplemos <rafael_plemos@hotmail.com>
Date: Fri Jul 4 18:43:02 2025 -0300

Small fixes
commit eaf75a91cll6c2ebl1d3900028U8859f6ccbeeba
Author: rplemos <rafael_plemos@hotmail.com>
Date: Thu Jul 3 07:U48:37 2025 -0300

Fix redundancy for electrostatic contacts
commit 7c33868febBcbl52fed2ce5U1b955737a0lUc5al8
Author: rplemos <rafael_plemos@hotmail.com>
Date: Mon Jun 30 12:57:27 2025 -0300

Added -c flag to select specific chains
commit Ocafb87fcl62ee8d9e6Ualll1868007c66U2289cdf

Author: rplemos <rafael_plemos@hotmail.com>
Date: Tue Jun 24 20:47:U46 2025 -0300

Fix edge case in .cif NMR pH values

commit 8duUfe2c589U22de35dallaaafdbab2U6082c8e636
Author: rplemos <rafael_plemos@hotmail.com>
Date: Mon Jun 23 16:27:34 2025 -0300

Fixed output format for web
:...skipping...

(HEAD -> main,

23

Historico de Commits

commit afl750e9cbel®30dfdd29637b6a32da2b63del3e (HEAD -> main,
Author: rplemos <rafael_plemos@hotmail.com>

$ glt /Og —-Stat Date: Fri Jul 4 18:43:02 2025 -0300
Small fixes
src/contacts.py | 18
src/parser.py | 2
2 files changed, 10 insertions(+), 10 deletions(-)
commit eaf75a91cll6c2ebll1d3900028U8859f6ccbeeba
Author: rplemos <rafael_plemos@hotmail.com>

Date: Thu Jul 3 07:U8:37 2025 -0300

Fix redundancy for electrostatic contacts

src/contacts.py | 23
1 file changed, 22 insertions(+), 1 deletion(-)

commit 7c33868febBcbl52fed2ce5U1b955737a0Uc5al8
Author: rplemos <rafael_plemos@hotmail.com>
Date: Mon Jun 30 12:57:27 2025 -0300

Added -c flag to select specific chains

cocada.py | 1

src/argparser.py | 2

src/classes.py |

src/contacts.py |

src/process.py |

5 files changed, 38 insertions(+), 8 deletions(-)

24

Histoérico de Commits

$ git log --oneline

afUy750e
eaf75a9
7c33868
Ocafb87
8dufe2c
aff1999
cb20697
b8d6f+9
3Uffdfd
d8b7c1e
b95121e
Uca89al
bebald8
9108bUe
7378FF2
0d2e9ul
317077b
LcfBa92
858f9%e6
9609b9b
c8c6918
9c8c961
clafa7f

(HEAD -> main, :) Small fixes

Fix redundancy for electrostatic contacts

Added -c flag to select specific chains

Fix edge case in .cif NMR pH values

Fixed output format for web

Added -d parsing for web, moved logic from main to argparser
Minor fixes

Full code refactor, ph and silent flags, etc.

Minor changes

Fixed AS atomnames in proteins with hydrogens

For web, changing custom_distances to be passed by a flag instead of from 4

Merging CL development branch into this repository. CL and Web version now
Aromatics distances now can be user-defined

Fixed a few rare bugs

Fixed small bugs with entities

First iteration of flexible distances defined by the user

(,) Preliminary interface contact detection
Main refactoring to include parameters in a new Context class

Modified version for the Web application

(tag: v1.0) Added citation

Fixed a few bugs with parser and output

Minor changes and web especific functions

Fixed edge cases on title and occupancy, and a few other small bugs

25

Diff
e Mostra as diferencgas entre versdes de arquivos no repositorio;

e Util para ver o que mudou entre commits.

diff —-git a/src/classes.py b/src/classes.py
index 70del3d..uf5dueld 100644
——— a/src/classes.py
+++ b/src/classes.py
class Contact:

"disulfide_bond":"DS",

"stacking-other":"AS",

"stacking-parallel”:"AS", # on v.1 all aromatic stackings will be considered the same

}

all_values = list(self.__dict__.values())
diff ——-git a/src/contacts.py b/src/contacts.py
index 8de75ba..26653Ud 10064l
—-—— a/src/contacts.py
+++ b/src/contacts.py

26

Repositorios Remotos

e Integracao especialmente com GitHub;
e Opcoes:

o Criar repositoério local e adiciona-lo a um remoto;

o Clonar repositorio ja existente.

27

Clonando Repositorios

e Clonando repositorio (com todas as informacgoes):
o $ git clone <repositério> <pasta local>

e Checando informacdes:
o $ git remote -v

e Adicionando outros repositérios remotos

o $ git remote add <nome> <url>

Checando status:

o $ git status

28

Fetch, Pull e Merge

e $ git fetch: busca atualizagdes no repositorio remoto;

e % git merge: une as atualizagdes do repositorio remoto com o local;

e § git pull: fetch + merge.

Git pull ‘ij“g
Repo Directory
Git fetcfk . /@t merge
Local

29

Exercicio

e Criar repositorio no GitHub

o Adicionar .gitignore, README e Licenca

e Adicionar como ‘origin’ no repositorio local
e Unir os dois repositorios localmente

e (Como resolver os conflitos?

30

Exercicio

e Criar repositorio no GitHub
o Adicionar .gitignore, README e Licenca
e Adicionar como ‘origin’ no repositorio local

e Unir os dois repositorios localmente

e (Como resolver os conflitos?

o § git merge origin/main --allow-unrelated-histories (forca um merge)
o § git reset --hard origin/main (sobrescreve o local)

o $git clone

31

Push

e $ git push <remote> <branch>

e Envia commits locais (que ja estao salvos no seu repositorio local) para um
repositério remoto.

Before Pushing After Pushing

I I

32

Working
Directory

Local

Local
Repository

Remote

Git Workflow

Pull

33

Branches

Main
Develop
Feature

Feature

- g—
00

34

Branches

e Checar branches:

o $ git branch (mostra locais)
o $ git branch -r (mostra remotos)

o $ git branch -a (mostra todos)
e Criar novo branch:

o $git branch <branch_name>
e Trocar branch:

o $ git switch <branch_name>
e Juntar branches:

o $ git merge <outra_branch> <branch_atual>

35

Merge vs. Rebase

0-0-0-0-Q

l git merge
@ G °—> G feature branch

0-0-60—0—06 0 w

36

Rebase

e Historico linear: Mais facil de entender e revisar.
e Evita commits de merge desnecessarios.

e Otimo para preparar cédigo antes de subir para o repositdrio remoto.

e Nunca use rebase em branches ja publicados/remotos que outras pessoas

estdo usando — isso muda a historia e pode causar conflitos para os outros.

37

Forks

»

Other’s
Yours

f r— =
! £\ Push
Clone =
=L

@ Nick J Lyon

38

Forks

e (Copia independente de um repositorio;

e Copia todo o histérico de commits, branches, arquivos e estrutura do projeto
original;

e Serve para experimentar, modificar ou contribuir sem afetar diretamente o

projeto principal (o "upstream").

39

Forks

& Quando vocé usaria um fork?

Situagdo
Contribuir com projetos open-source

Customizar um projeto existente

Testar ideias sem riscos

Por qué usar fork

Vocé nao tem permissao de escrita no repositério onginal
Vocé quer fazer mudangas proprias sem depender do autor onginal

Pode alterar livremente, criar branches, apagar, reescrever histérico

40

Clones vs. Forks

Clone: Copia local. Baixa os arquivos de um repositorio remoto.

Fork: Copia na nuvem. Cria um novo repositorio online.

Git clone Git fork
PUSH PULL Developer 1 PUSH PULL Developer 1
p'r;':"t PUSH PULL Clone PUSH PULL clone
Developer 2 Developer 2
PUSH PULL PUSH PULL

Clone FORK Clone

Developer 3 Developer 3

o .
repo
Developer 4

Clones vs. Forks

e Fork no GitHub;

e Clone do Fork localmente;
o Adicionar o original como remote ($ git remote add upstream <.git>)

e Criar Branch de trabalho;
e Commit das alteracoes;
e Push para o Fork no GitHub;

e Pull Request para o repositorio original.

42

Pull Requests

e Pedido formal para que alteractes feitas em um branch (ou um fork) sejam

mescladas a outro branch.

Create Branch Create Pull Request Merge Bra

43

Pull Requests

e Alteragcdes em uma branch separada (ou um fork);
e Envio para o repositério remoto (branch ou fork);

e Abertura de um pull request comparando sua branch com a branch de destino.

e Outros colaboradores podem:

o Ver o que foi alterado (diffs),
o Fazer comentarios linha a linha,
o Aprovar ou solicitar mudancgas,

o E, por fim, dar merge no PR.

44

Pull Requests

Quando usar?
e Colaborando com projetos open-source.
e Requisitando revisdo de codigo.
e Gerenciando alteragdes entre equipes.

e Trabalhando com forks (sem acesso direto ao repositério principal).

45

Selecting and operating an ACME client yourself

If your hosting provider does not handle getting and managing certificates for you, and if you have the ability to run
commands on your server with sufficient privileges, you can select an ACME client and run it yourself to get certificates from

Let’s Encrypt.

For most people we recommend the Certbot ACME client. The Certbot website has excellent documentation and instructions

for operating Certbot.

There are many_more options for ACME client software if for some reason Certbot does not meet your needs.
If your client needs to be configured with the Let’s Encrypt ACME API endpoint, it is:

https://acme-v@2.api.letsencrypt.org/directory

We recommend running tests against our staging API first.

46

