
Controle de Versão
Rafael Lemos

rafaellemos42@gmail.com

1

● O que é Git?

● O que é GitHub?

● Qual a diferença entre os dois?

2

Controle de Versão

Sistema que acompanha e registra todas as alterações feitas em arquivos ou

projetos ao longo do tempo. Ele permite reverter arquivos ou projetos a versões

anteriores, comparar mudanças feitas em diferentes momentos, e identificar quem

fez cada modificação, quando foi feita e por quê. Isso facilita a correção de erros,

o trabalho em equipe e o entendimento da evolução do projeto.

3

Controle de Versão Local

4

Controle de Versão Centralizado

Propenso a falhas

5

Controle de Versão Distribuído

6

De onde veio o Git?

● Início do Linux (1991-2002): “controle de versão” era o próprio Linus Torvalds
e pequenos patches (totalmente contra CVCS);

● 2002: incorporação do BitKeeper (DVCS) no Linux.
○ Porém, a licença era extremamente restritiva

https://graphite.dev/blog/bitkeeper-linux-story-of-git-creation
7

De onde veio o Git?

● 2005: quebra da licença fazendo engenharia reversa do BitKeeper;

● Quebra da relação entre as comunidades;

● Discussão na comunidade sobre alternativas:
○ Rápidas

○ Design simples

○ Suporte a desenvolvimento não-linear

○ Totalmente distribuídas

○ Capazes de lidar com grandes projetos (Linux)

https://graphite.dev/blog/bitkeeper-linux-story-of-git-creation
8

De onde veio o Git?

● Linus de “peacemaker”:

● Linus entra de férias…

https://graphite.dev/blog/bitkeeper-linux-story-of-git-creation
9

De onde veio o Git?

● Durante as “férias”:
○ Troca de emails sobre alternativas (criar uma nova era fora de cogitação)

○ Senso de urgência para continuar o desenvolvimento do Linux

● 7 dias depois… Nasce o Git (ou o esqueleto dele)
○ Não havia discussão do Workflow, mas sim da arquitetura (hash-based)

○ Ainda não era 100% um controle de versão

https://graphite.dev/blog/bitkeeper-linux-story-of-git-creation
10

De onde veio o Git?

Duas semanas depois:

Dois anos depois:

11

De onde veio o Git?

“Git foi criado como uma ferramenta para destravar futuros lançamentos do kernel
do Linux, não com a intenção de reinventar globalmente toda a gestão de
código-fonte;

Quando pensamos na história, muitas vezes a romantizamos como algo que
nasce de um súbito lampejo de inspiração. Mas a criação do Git mostra a
realidade muito mais dura da invenção: um desacordo crescente sobre uma
licença; a necessidade de uma solução improvisada para destravar o trabalho; e
depois, anos e anos de aperfeiçoamento contínuo, liderado não pelo inventor,
mas por uma comunidade.”

https://graphite.dev/blog/bitkeeper-linux-story-of-git-creation
12

Tá, mas por que o Git é especial?

Normalmente: delta-based

Git: “snapshot”-based

13

Vantagens

● Distribuído: Cada desenvolvedor tem uma cópia completa do repositório,

incluindo todo o histórico.

● Seguro: Usa SHA-1 para garantir integridade dos dados.

● Flexível: Suporta vários fluxos de trabalho (centralizado, com ramificações,

etc.).

● Rápido e local: Nenhuma informação é necessária de outro computador da

rede.
○ Mudanças e histórico são armazenados localmente nos arquivos (lembram do hash?)

14

Os Três Estados

● Modified: arquivo alterado, mas ainda sem commit;

● Staged: arquivo marcado para fazer parte do próximo commit;

● Committed: arquivo está armazenado no banco de dados local.

15

Os Três Estados

16

Setup Inicial - Git Config

● Sistema (--system): [path]/etc/gitconfig

● Global (--global): ~/.gitconfig

● Repositório (--local): .git/config

$ git config --list --show-origin

Prioridade

17

Setup Inicial - Git Config

● $ git config --global user.name “usuário”

● $ git config --global user.email “email”

● $ git config --global init.defaultBranch main

● $ git config --list

18

Setup Inicial - Ajuda

● Geral: $ git help

● Detalhada: $ git help <comando>

● Resumida: $ git <comando> -h

19

Criando Repositórios Locais

● Criando repositório do zero:

○ $ git init <pasta>

● Adicionando arquivos (tracking):

○ $ git add <arquivo>

● “Committando” arquivos (só os que foram adicionados):

○ $ git commit -m <mensagem>

● Checando status:

○ $ git status

20

Status dos Arquivos

● Tracked:
○ Arquivos que o Git “sabe que existem”;

○ Podem ser unmodified, modified e staged;

● Untracked:
○ Arquivos que o Git “não sabe que existem”;

○ Precisam ser adicionados;

● Ignored:
○ Arquivos de log, configuração…

○ Presentes no arquivo .gitignore

○ Boas práticas e templates: https://github.com/github/gitignore

21

Status dos Arquivos

22

Histórico de Commits

$ git log

23

Histórico de Commits

$ git log --stat

24

Histórico de Commits

$ git log --oneline

25

Diff

● Mostra as diferenças entre versões de arquivos no repositório;

● Útil para ver o que mudou entre commits.

26

Repositórios Remotos

● Integração especialmente com GitHub;

● Opções:

○ Criar repositório local e adicioná-lo a um remoto;

○ Clonar repositório já existente.

27

Clonando Repositórios

● Clonando repositório (com todas as informações):

○ $ git clone <repositório> <pasta_local>

● Checando informações:

○ $ git remote -v

● Adicionando outros repositórios remotos

○ $ git remote add <nome> <url>

● Checando status:

○ $ git status

28

Fetch, Pull e Merge

● $ git fetch: busca atualizações no repositório remoto;

● $ git merge: une as atualizações do repositório remoto com o local;

● $ git pull: fetch + merge.

29

Exercício

● Criar repositório no GitHub

○ Adicionar .gitignore, README e Licença

● Adicionar como ‘origin’ no repositório local

● Unir os dois repositórios localmente

● Como resolver os conflitos?

30

Exercício

● Criar repositório no GitHub

○ Adicionar .gitignore, README e Licença

● Adicionar como ‘origin’ no repositório local

● Unir os dois repositórios localmente

● Como resolver os conflitos?

○ $ git merge origin/main --allow-unrelated-histories (força um merge)

○ $ git reset --hard origin/main (sobrescreve o local)

○ $ git clone
31

Push

● $ git push <remote> <branch>

● Envia commits locais (que já estão salvos no seu repositório local) para um
repositório remoto.

32

33

Branches

34

Branches

● Checar branches:

○ $ git branch (mostra locais)

○ $ git branch -r (mostra remotos)

○ $ git branch -a (mostra todos)

● Criar novo branch:

○ $ git branch <branch_name>

● Trocar branch:

○ $ git switch <branch_name>

● Juntar branches:

○ $ git merge <outra_branch> <branch_atual>
35

Merge vs. Rebase

36

Rebase

● Histórico linear: Mais fácil de entender e revisar.

● Evita commits de merge desnecessários.

● Ótimo para preparar código antes de subir para o repositório remoto.

● Nunca use rebase em branches já publicados/remotos que outras pessoas

estão usando — isso muda a história e pode causar conflitos para os outros.

37

Forks

38

Forks

● Cópia independente de um repositório;

● Copia todo o histórico de commits, branches, arquivos e estrutura do projeto

original;

● Serve para experimentar, modificar ou contribuir sem afetar diretamente o

projeto principal (o "upstream").

39

Forks

40

Clones vs. Forks

Clone: Cópia local. Baixa os arquivos de um repositório remoto.

Fork: Cópia na nuvem. Cria um novo repositório online.

41

Clones vs. Forks

● Fork no GitHub;

● Clone do Fork localmente;

○ Adicionar o original como remote ($ git remote add upstream <.git>)

● Criar Branch de trabalho;

● Commit das alterações;

● Push para o Fork no GitHub;

● Pull Request para o repositório original.

42

Pull Requests

● Pedido formal para que alterações feitas em um branch (ou um fork) sejam

mescladas a outro branch.

43

Pull Requests

● Alterações em uma branch separada (ou um fork);

● Envio para o repositório remoto (branch ou fork);

● Abertura de um pull request comparando sua branch com a branch de destino.

● Outros colaboradores podem:

○ Ver o que foi alterado (diffs),

○ Fazer comentários linha a linha,

○ Aprovar ou solicitar mudanças,

○ E, por fim, dar merge no PR.

44

Pull Requests

Quando usar?

● Colaborando com projetos open-source.

● Requisitando revisão de código.

● Gerenciando alterações entre equipes.

● Trabalhando com forks (sem acesso direto ao repositório principal).

45

46

